
JOURNAL OF MATERIALS SCIENCE 26 (1991) 2195 2198 

The graphical interpretation of fracture load 
data for doubly-convex cylindrical discs 

P. STANLEY 
Department of Engineering, Simon Building, University of Manchester, Oxford Road, 
Manchester, M13 9PL UK 

A set of graphs is developed for the determination of the material tensile strength of a brittle, 
doubly-convex cylindrical disc from the disc dimensions and the fracture load in in-plane dia- 
metral compress'ion. Graphs are also presented relating the normalized geometric variables of 
the disc and giving the normalized volume of the disc in terms of the geometric parameters. 

1. Introduction 
The symmetrical doubly-convex cylindrical disc 
(Fig. 1) is the generic form of a wide range of brittle 
compacts, typified for example by a large number of 
pharmaceutical tablets. In designing such compacts 
and appraising their quality, a means of determining 
the material strength (or "hardness") and an under- 
standing of the relationship between geometric 
parameters and material strength are important re- 
quirements. The "Brazilian disc" test or "indirect" 
tensile test [t] ,  in which the disc is loaded to fracture 
by means of two equal, opposed, in-plane compressive 
forces, has an invaluable role in this context and is 
widely used. For the plane-faced disc, classical 
theory of elasticity [2] provides a simple relationship 
between the fracture load and the material tensile 
strength. For the convex-faced disc, as a result of 
fracture studies of brittle specimens, a relationship 
between fracture load (Pc), geometric variables and 
material tensile strength (Cry) has been developed [3] 
in the form 

10P, 
~f ~D2F (1) 

where 

F = 2.84 - 0.126 + 3.15-- + 0.01 (2) 
D 

and t is the overall thickness of the convex-faced disc 
(see Fig. 1), D is the diameter and Wis the length of the 
cylindrical portion. 

The range of variables covered in establishing 
Equation 1 was 

W 
o.06 g 0.3 

o 
0 ~< ~ ~< 1.43 

where R is the radius of curvature of the disc faces. 
Equation 1 is definitive in that the term F relates 

uniquely and specifically to the disc dimensions, but 
the variables in the equation are not the most relevant 
and in the form given the equation does not lend itself 
to speedy interpretation. In this paper, Equation 1 is 

0022-2461/91 $03.00 + .12 �9 1991 Chapman and Hall Ltd. 

remodelled and presented in graphical form in terms 
of the variables t/D and D/R, so that fracture load 
results for a disc of a given shape can be readily 
converted into material tensile strength values. Other 
graphical aids are also given in the paper. 

2. Graphical approach 
In considering alternative forms of Equation L it was 
accepted that the most useful non-dimensional para- 
meters are RID and t/D. The former follows directly 
from the punch and disc dimensions, which will be 
known, and the thickness t can be readily measured, 
using a micrometer for example. The following rela- 
tionship between the dimensional variables shown in 
Fig. 1 is readily derived: 

W = t - [2R - (4R 2 - O 2 )  1/2] (3) 
i.e. 

where 

D - D f (4) 

f - D \ D2 1 (5) 

Using Equation 3, W can be eliminated from F 
(Equation 2) to give 

5.99 D - 0 . 1 2 6 1 1 -  D f ( D ) I -  

- . ( ) 3 1 5 f  R + 0.01 

F = 

(6) 

The term F has been calculated from Equation 6 for a 
series of t/D values (in intervals of 0.05) over the range 
of D/R values 0 <~ D/R <<. 1.6. The results are shown in 
the first quadrant of Fig. 2 (top right) in the form of a 
graph of F against D/R for each t/D value. The lower 
and upper t/D limits of the experimental test range for 
a given D/R value are readily calculated from Equa- 
tion 4 using the limiting W/D values of 0.06 and 0.3 in 
turn. The corresponding F values may then be ob- 
tained from Equation 6. The derived lower and upper 
limits of the experimental test range are shown as 
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Figure 1 Doubly-convex cylindrical disc subjected 
to diametrically opposed compressive forces p. 
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broken lines in Fig. 2, and, strictly speaking, the valid- 
ity of the empirical Equation 2 is restricted to the 
shapes within the enclosed area. Cautious extrapola- 
tion outside this, however, should not introduce 
serious errors. 

The second quadrant of Fig. 2 (top left) provides a 
graphical means of multiplying the quantity F by D z. 
If a horizontal line is drawn from a specified point on 
the vertical axis (labelled F) on to the appropriate D 
line, then a vertical line from the point of intersection 
witt intersect the horizontal axis (labelled D2F) at a 
point corresponding to the product D2F. F is non- 
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Figure 2 Chart for determination of material tensile strength (crf) 
from fracture load (P~): (top right) F against D/R for specified t/O 
values; (top left) D2F against F for specified D values; (bottom left) 
~f against DZF for specified Ps values. 

dimensional; the units of D2F will therefore corres- 
pond to those of D (e.g. ifD is in ram, then D2F will be 

i n  ram2). 
The multiplying of the fracture load Ps by the 

quantity IO/nD2F (see Equation 1) is effected in the 
third quadrant of Fig. 2 (bottom left). Two vertical crf 
axes have been incorporated in this quadrant in order 
to provide adequate resolution for the larger D2F 
values. For 0 < D2F ~< 2 the relevant of axis is the one 
marked 1, 2, 3 . . . .  6; for 2 < D2F < 6 the relevant of 
axis is the one marked 0.5, 1.0, 1.5. The procedure in 
using the third quadrant is to take a vertical line from 
a point on the D2F axis down on to the appropriate Ps 
curve and then a horizontal line to intersect the 
appropriate of axis; the point of intersection gives the 
material tensile strength or "hardness", of. The units 
of of will correspond with those of D and Ps. If these 
are millimetres and newtons respectively, then of will 
be i n N m m  -2 (i.e. MPa); if Ps is obtained in kilo- 
grams (which is not strictly a unit of force) then, with D 
in millimetres, crf will be in kg mm-2. Curves corres- 
ponding to only one decade of P, values (from 10 to 
100) are shown but a multiplying, or dividing, factor 
of 10 (or any multiple of 10) can be readily introduced 
into the Ps curves and carried forward to the crf axes. 



To illustrate the use of the Fig. 2 curves, an example 
is shown for which D = 12.5 mm, R = 12.5 mm (i.e. D/R 
= 1.0), t = 5.85 mm (t/D = 0.468) and Ps = 45.3 kg. 

With these data, the F value obtained in the first 
quadrant is 1.67. (Linear interpolation between adja- 
cent t/D curves does not generally introduce signifi- 
cant error.) The D2F value obtained in the second 
quadrant is 260 mm 2 (again with linear interpolation 
between adjacent D lines). Linear interpolation along 
a vertical line through the Ps curves in the third 
quadrant involves no approximation, and a o r value 
of 0.55 kgmm -2 (i.e. 54.1 M N m  -2) is obtained. The 
same value is obtained by direct calculation from 
Equations 1 and 2. 

2.1. Other  g raphs  
Two further graphs are presented to facilitate data 
processing in this context. 
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Figure 4 Normalized volume (V/(nD3/4)) against 
ratio of overall thickness to diameter (t/D). 

Fig. 3 is a graphical version of Equation 4, from 
which W/D may be readily derived for known values 
of t/D and D/R, or any one normalized variable 
obtained in terms of the other two. Equation 4 is a 
geometrical relationship and is valid without limit for 
all positive values of the variables shown in Fig. 1. 

The volume, V, of a doubly-convex disc is an essen- 
tial requirement in the determination of the material 
density. It is readily shown that 

V - 4 - g (7) 

where 

g ( R ) = f ( R )  { 1 - f ( R ) [ ~ - - ~ f ( R ) ] }  

(8) 

Figure 3 Ratio of cylinder length to diameter (W/D) 
against ratio of overall thickness to diameter (t/D). 
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or alternatively 

0tD3/4) - D g ~- (9) 

In Equation 9 the volume Vis normalized with respect 
to riD3~4, the volume of a plane-faced disc (i.e. 
D/R = 0) with t = D. V/(rtD3/4) is plotted in Fig. 4 
against t/D for a series of D/R values and the normal- 
ized volume can be readily read from the graph when 
t/D and D/R are known. For a specified D the volume 
is then calculated directly. The lower bounding curve 
in Fig. 4 results from the condition that W, the length 
of the cylindrical portion of the disc, must be equal to, 
or greater than, zero. With this proviso, and positive 
values of the other variables, Equation 9, like Equa- 
tion 4, is valid without limit. 
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